Characterization and Removal of RFI Artifacts in Radar Data via Model-Constrained Deep Learning Approach

نویسندگان

چکیده

Microwave remote sensing instruments such as synthetic aperture radar (SAR) play an important role in scientific research applications, while they suffer great measurement distortion with the presence of radio frequency interference (RFI). Existing methods either adopt model?based optimization or follow a data?driven black?box learning scheme, and both have specific limitations terms efficiency, accuracy, interpretability. In this paper, we propose hybrid model?constrained deep approach for RFI extraction mitigation by fusing classical model-based advanced data-driven method. Considering temporal-spatial correlation target response, well random sparsity property time?varying interference, joint low?rank sparse framework is established. Instead applying iterative process uncertain convergency, proposed scheme approximates stacked recurrent neural network. By adopting strategy, original unsupervised decomposition problem converted to supervised problem. Experimental results show validity method under diverse scenarios, which could avoid manual tuning model hyperparameters speed up efficiency.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

assessment of deep word knowledge in elementary and advanced iranian efl learners: a comparison of selective and productive wat tasks

testing plays a vital role in any language teaching program. it allows teachers and stakeholders, including program administrators, parents, admissions officers and prospective employers to be assured that the learners are progressing according to an accepted standard (douglas, 2010). the problems currently facing language testers have both practical and theoretical implications but the first i...

Removal of RFI in Wideband Radars

The least-mean-square (LMS) adaptive filter is applied to suppress narrow-band radiofrequency interference (R.FI) in wideband synthetic aperture radar (SAR.) signals. Simulation is used to show the working principles of the adaptive filter and to obtain the optimum filter's parameters. The algorithm is tested with P-band synthetic aperture radar (SAR.) data collected by the NASA/JPL airborne SA...

متن کامل

Deep Learning of Constrained Autoencoders for Enhanced Understanding of Data

Unsupervised feature extractors are known to perform an efficient and discriminative representation of data. Insight into the mappings they perform and human ability to understand them, however, remain very limited. This is especially prominent when multilayer deep learning architectures are used. This paper demonstrates how to remove these bottlenecks within the architecture of non-negativity ...

متن کامل

the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance

با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2022

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs14071578